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We investigate the spontaneous emission rate of a two-level quantum emitter next to a composite medium

made of randomly distributed metallic inclusions embedded in a dielectric host matrix. In the near-field, the

Purcell factor can be enhanced by two-orders of magnitude relative to the case of an homogenous metallic

medium, and reaches its maximum precisely at the insulator-metal transition. By unveiling the role of the

decay pathways on the emitter’s lifetime, we demonstrate that, close to the percolation threshold, the radiation

emission process is dictated by electromagnetic absorption in the heterogeneous medium. We show that our

findings are robust against change in material properties, shape of inclusions, and apply for different effective

medium theories as well as for a wide range of transition frequencies.

I. INTRODUCTION

In cavity quantum electrodynamics, spontaneous emission

(SE) is a pivotal example of energy transfer from an excited

quantum emitter (atom, molecule, or quantum dot) into its en-

vironment. As first predicted by Purcell [1] and later exper-

imentally confirmed by Drexhage et al. [2], the environment

exerts a crucial influence on the emitters’ decay. Indeed, the

presence of objects in the system allow for new energy relax-

ation channels (e. g. plasmonic excitations) that can strongly

affect the emitter’s lifetime [3]. The influence of the environ-

ment on the emitter’s SE rate characterizes the Purcell effect

and is quantified by the local density of states (LDOS). Typ-

ically, a modification of the LDOS involves either changing

the environment geometry or its material properties [4].

The last decade has witnessed an increasing research effort

towards the control of SE rate due to the notable progresses in

near-field optics, plasmonics, and metamaterials. Advances

in nano-optics have not only allowed the improvement of the

spectroscopical resolution of molecules in complex environ-

ments [5], but have also led to the use of nanometric objects

(e.g. nanoparticles and nanotips) that modify the lifetime and

enhance the fluorescence of single molecules [6, 7]. The ad-

vent of plasmonic devices and metamaterials has also opened

new possibilities for tailoring the SE rate. Indeed, the local

field enhancement due to excitation of plasmonic resonances

has been explored in several applications, such as the surface-

enhanced Raman scattering [8–10], and the modification of

two-level atom resonance fluorescence [11]. In addition, pho-

tonic crystals [12], optical cavities [13], metallic nanostruc-

tures [14, 15], plasmonic cloaks [16, 17], hyperbolic meta-

materials [18], ENZ metamaterials [19–22] and negative in-

dex materials [23] are some examples of systems in which the

LDOS and SE rate are dramatically affected by unusual pho-

tonic properties of the environment. Besides, gated and mag-

netic field biased graphene correspond to systems where ac-

tive control of the Purcell effect can be implemented [24, 25].

However, in most of previous examples the modification of

the LDOS involves sophisticated nano-fabrication techniques

and/or complex nanostructures.

In the present paper, we propose an alternative material

platform, of easy fabrication, to tailor and control the SE of

quantum emitters, namely, composite media. Our study is

motivated by recent experimental observations that the SE

is modified in the presence of metallic, semicontinuous me-

dia [26–28]. Specifically, we have investigated the SE rate of

a two-level atom in the vicinities of a semi-infinite medium

composed of metallic inclusions, with various shapes and

concentrations, embedded in a dielectric host medium. Ap-

plying different homogenization techniques (Bruggeman [29]

and Lagarkov-Sarychev [30]), we demonstrate that the SE rate

is remarkably enhanced in composite media in relation to the

case where homogeneous media are considered. In particular,

we show that SE rate is maximal precisely at the insulator-

metal transition (percolation threshold). We demonstrate that

these results are independent of the shape and material of the

inclusions, and are valid for a broad range emission wave-

lengths. Altogether our findings suggest that composite media

could be exploited in the design of novel, versatile materials

in applications involving the radiative properties of light emit-

ters.

The paper is organized as follows. In Sec. II we present the

employed methodology and the effective medium theory used

to model the effective electric permittivity of the composite

medium. In Sec. III we present our main results and the re-

lated discussions, while in Sec. IV we summarize the results

and conclude.

II. METHODOLOGY

A. The Purcell Effect

Let us consider a two-level emitter at a distance z of a semi-

infinite medium composed of randomly distributed metallic

inclusions (electric permittivity εi) embedded in a dielectric

host matrix (electric permittivity εhm), as shown in Fig. 1. In

the presence of an arbitrary environment, the SE rate of a two-

level atom at position r reads [3]
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Figure 1. Schematic view of the system under investigation: a two-

level emitter at a distance z of a half-space composed of metallic

(gold) inclusions embedded in a dielectric (polystyrene) host matrix.

Γ21 =
6πc

ω0
Γ(0) Im{n ·G(r, r;ω0) · n} , (1)

where Γ(0) = ω3
0 |d21|

2/3π~ε0c
3 is the free-space SE rate,

ω0 = k0c is the transition frequency, d21 the emitter’s transi-

tion electric dipole moment, n = d21/|d21|, and G(r, r′;ω)
is the dyadic Green function of the system. The influence of

the surrounding bodies on the emitter’s lifetime is coded into

G(r, r′;ω), which satisfies

∇×∇×G(r, r′;ω)−
ω2

c2
G(r, r′;ω) = Iδ(r− r′). (2)

In free-space the dyadic Green function can be cast as

(for z > z′)

G
(0)(r, r′;ω) =

i

2

∫

Mei[k‖·(r−r
′)+kz0(z−z′)]

kz0

d2k‖

(2π)2
, (3)

where kz0 =
√

k20 − k2‖ and M is given by

M = ǫ
+
TE ⊗ ǫ

+
TE + ǫ

+
TM ⊗ ǫ

+
TM , (4)

with the TE- and TM-polarization vectors defined as

ǫ
±
TE =

−kyx̂+ kxŷ

k‖
, and ǫ

±
TM =

±kz0k‖ − k2‖ẑ

k‖k0
. (5)

Note that these vectors are orthogonal, but they are normal-

ized only for propagating modes (k‖ < k0). Substituting Eq.

(3) into (1) and using that at the coincidence the only non van-

ishing components of G(0) are G
(0)
xx = G

(0)
yy and G

(0)
zz one can

show that Γ21 = Γ(0), as it should be.

In an inhomogeneous environment Eq. (3) does not give

the full Green function of the problem. In this case the dyadic

Green function has to be modified in order to satisfy the elec-

tromagnetic field boundary conditions and to take into ac-

count scattering owing to neighboring objects. Particularly,

for an emitter close to a half-space presenting a flat interface at

z = 0, one can write G(r, r′;ω) = G
(0)(r, r′;ω) +

G
(S)(r, r′;ω), where [3]

G
(S)(r, r′;ω) =

i

2

∫

R eik‖·(r−r
′)eikz0(z+z′)

kz0

d2k‖

(2π)2
, (6)

is the Green function associated to the electromagnetic field

generated by the oscillating dipole source and scattered (re-

flected) by the semi-infinite medium. R is the half-space re-

flection matrix given by

R =
∑

i , j={TE, TM}

ri, j
ǫ
+
i ⊗ ǫ

−
j , (7)

where ri, j (i, j = TE, TM) corresponds to the reflection co-

efficient for incoming j-polarized light that is reflected as an

i-polarized wave.

Given this system geometry, one can decompose the SE rate

in two contributions Γ21 = Γ⊥ + Γ‖. Here, Γ⊥ (Γ‖) ex-

presses the decay rate contribution due to the transition dipole

moment component perpendicular (parallel) to the vacuum-

medium interface. Plugging Eqs. (3)-(7) into Eq. (1) one can

show that [25]

Γ⊥

Γ(0)
=

d2z
|d21|2

{

1 +
3

2

∫ k0

0

k3‖

k30 ξ
Re

[

rTM, TM e2iξz
]

dk‖

+
3

2

∫ ∞

k0

k3‖

k30 ζ
e−2ζzIm

[

rTM, TM
]

dk‖

}

, (8)

and

Γ‖

Γ(0)
=

d2‖

|d21|2

{

1 +
3

4

∫ k0

0

k‖

k30 ξ
Re

[(

k20r
TE, TE

− ξ2 rTM, TM
)

e2iξz
]

dk‖ +
3

4

∫ ∞

k0

k‖

k30 ζ
Im

[

k20 r
TE, TE

+ ζ2 rTM, TM
]

e−2ζzdk‖

}

, (9)

where ξ =
√

k20 − k2‖ and ζ =
√

k2‖ − k20 . In the cases we

consider rTE, TE and rTM, TM will be given by the usual Fresnel

reflection coefficients for a flat interface between vacuum and

an homogeneous medium, namely [3]

rTE, TE =
kz0 − kz1
kz0 + kz1

, rTM, TM =
εekz0 − kz1
εekz0 + kz1

, (10)

where εe is the effective dielectric constant of the substrate

(see next section) and kz1 =
√

εek20 − k2‖. Finally, note

that for an isotropic atom we have d2z/|d12|
2 = 1/3 and

d2‖/|d12|
2 = 2/3.

B. Effective Medium Theory

Effective medium theories allow one to construct an effec-

tive dielectric constant εe of a composite medium as a function
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of its constituents’ properties (dielectric constants and shapes)

as well as of the fractional volumes characterizing the mix-

ture [29–32].

One of the most important and successful effective medium

approaches is the Bruggeman Effective Medium Theory

(BEMT), which is the simplest analytical model that pre-

dicts an insulator-metal transition at a critical concentration of

metallic particles in the dielectric host [29, 33]. BEMT treats

the dielectric host medium and the metallic inclusions sym-

metrically, and it is based on the following assumptions: (i)
the grains are randomly oriented spheroidal particles, and (ii)
they are embedded in an homogeneous effective medium of

dielectric constant εe that will be determined self-consistently

[33]. In this work we consider spheroidal inclusions whose

geometry is characterized by the depolarization factor 0 ≤
L ≤ 1. Explicit expressions of L in terms of the eccentricity

e of the spheroid are [34]

L =



















1− e2

2e3

[

ln

(

1 + e

1− e

)

− 2e

]

, prolate spheroid

1 + e2

e3
[e− arctan(e)], oblate spheroid

(11)

Within the BEMT εe is computed by demanding that the av-

erage over all directions of the scattered Poynting vector van-

ish when the system is illuminated by a monochromatic wave

with wavelength (both in vacuum and inside the medium)

much larger than the size of the inclusions. In this case,

the effective permittivity satisfies the following equation [29–

32, 34],

(1 −f)

{

εhm − εe
εe + L(εhm − εe)

+
4(εhm − εe)

2εe + (1− L)(εhm − εe)

}

+ f

{

εi − εe
εe+L(εi − εe)

+
4(εi − εe)

2εe + (1− L)(εi − εe)

}

= 0 ,(12)

where εi, εhm are the dielectric constants of the metallic in-

clusions and host matrix, respectively, and f (0 ≤ f ≤ 1)

is the volume filling factor for the metallic inclusions. Equa-

tion (12) has several roots but only the one with Im(εe) ≥ 0
is physical since we are assuming passive materials (i. e., no

optical gain).

The percolation threshold fc corresponds to a critical value

of the filling factor for which the composite medium under-

goes an insulator-conductor transition, thereby exhibiting a

dramatic change in its electrical and optical properties [30–

35]. This critical filling factor is calculated by taking the

quasi-static limit (ω → 0) in Eq. (12). In this limit, εi ≫ εhm,

Im[εi] ≫ Re[εi], and Im[εhm] ≪ Re[εhm] provided the host

medium does not have a resonance near ω = 0. Conse-

quently, εi (εhm) may be approximated by a pure imaginary

(real) function. Besides, if f < fc (f ≥ fc) the effective

medium behaves as a dielectric-like (metal-like) material so

that Re[εe] > 0 (Re[εe] < 0) in the low frequency regime.

Hence, the critical threshold filling factor can be obtained

by the condition Re[εe] = 0. For spheroidal inclusions the

BEMT predicts that the percolation transition occurs at [30–

32, 34]

fB
c (L) =

L(5− 3L)

(1 + 9L)
. (13)

In order to test the robustness of our results with respect to

specific features of a given effective medium theory, we shall

consider an alternative homogenization technique proposed

by Lagarkov and Sarychev in Ref. [30] as well. The Lagarkov-

Sarychev approach is known to give more accurate results for

fc than the BEMT in the regime of small L (L ≪ 1); the

critical filling factor within the Lagarkov-Sarychev effective

medium theory is[30]

fLS
c (L) =

9L(1− L)

2 + 15L− 9L2
. (14)

In the following section the SE rate of an emitter close to a

semi-infinite composite medium will be computed by means

of the effective medium approaches described above. The di-

electric functions of the metallic inclusions εi and of the di-

electric host-medium εhm are

εi(ω) = 1−
ω2
pi

ω2 + i γiω
, (15)

εhm(ω) = 1 +
∑

j

ωhm
pj

2

ω2
Rj − ω2 − i ω Γj

, (16)

where ωpi (ωhm
pj ) and γi (Γj) are, respectively, the plasma

frequency (oscillating strengths) and the inverse of the relax-

ation time(s) of the metallic inclusions (host medium). The

value of these parameters for the metals (Au, Cu, Ti, Ag)

and dielectrics (polystyrene) considered were extracted from

Refs. [36–38].

III. RESULTS AND DISCUSSIONS

In Fig. 2 the SE rate is calculated as a function of the

distance between the emitter and the semi-infinite medium

made of spherical (L = 1/3) gold inclusions embedded in a

polystyrene host matrix for different values of the filling frac-

tions f . Within BEMT the dielectric constant of the compos-

ite medium presents a dielectric-like (metal-like) response for

f < 1/3 (f > 1/3) [33]. The emitter is assumed to be a Cae-

sium (Cs) atom with transition wavelength λ = 450 µm, that

is, in the THz frequency range. It is clear that the compos-

ite media may greatly enhance the SE rate when compared to

the homogeneous cases f = 0 and f = 1 for both transition

electric dipole parallel and perpendicular to the flat interface.

Indeed, in the presence of the composite media the emitter’s

decay rate may be five to six orders of magnitude times larger

than its value in free space for distances z ∼ 100 nm, as it

can be seen in Figs. 2a and 2b for Γ‖ and Γ⊥, respectively.

Figure 2 also reveals that the transition from far- to near-field

effects on the emitter’s lifetime can be tuned by the filling

factor f . Interestingly, for f = fB
c = 1/3 near-field effects

become relevant even for distances of the order of z ∼ 1µm.
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Similar qualitative results hold for the perpendicular configu-

ration, even though f seems to play a less prominent role in

the near-to-far-field transition distance range.

It should be noticed that in the far-field regime the de-

pendence of the SE rate on f is very weak, where the ex-

pected oscillatory behavior occurs for z & 10µm. For large

distances Γ‖ and Γ⊥ can be approximated by the first inte-

grals in Eqs. (8) and (9) with the main contribution origi-

nating from electromagnetic modes with kz0 = ξ ≃ 0 (due

to the oscillatory behavior of e2iξz). An expansion of the

reflection coefficients around kz0 = 0 shows that rTE, TE ≃
rTM, TM ≃ −1 +O(ξ/k0) and, hence, the dominant contribu-

tion to the emitter’s decay rate in the far-field does not carry

information about the electromagnetic properties of the sub-

strate. On the other hand, the metal concentration strongly

affects the Purcell effect for distances z . 1 µm. For such

distances light emission is more affected by electromagnetic

evanescent modes (k‖ > k0) that exist only close to the

air-substrate interface. Particularly, in the extreme near-field

regime an approximate analytic expression for the SE rate

can be obtained by taking the quasi-static limit (c → ∞)

in Eqs. (8) and (9),

Γ⊥

Γ(0)
≃ 2

Γ‖

Γ(0)
≃

3

8

1

k30z
3

Im[εe]

|εe + 1|2
. (17)

Note that the z−3 distance scalling-law for bulk materials is

rederived regardless of the optical characteristics of the sub-

strate. On the one hand, for low values of f the decay rate

dynamics is governed by the (small) losses in the dielectric

host since Γ⊥,‖ are proportional to Im[εe] ≃ Im[εhm] ≪ 1.

The SE rate increases as small amounts of metallic inclusions

are added to the host matrix due to enhancement of absorption

processes in the substrate. On the other hand, large concen-

trations of metal lead to SE rates proportional to 1/Im[εe] ≃
1/Im[εi] ≪ 1. Based on this analysis, its clear that the

emitter’s lifetime will be greatly modified by f , as seen in

Figs. 2a and b for z . 1 µm.

The fact that in the near-field regime Γ⊥,‖ initially grows

with Im[εe] (f ≪ 1) and then decays with 1/Im[εe] (f ≃ 1)

suggests that the decay rate should present a peak at some crit-

ical filling factor. Remarkably, the SE rate reaches its maxi-

mum value at fB
c = 1/3 (see Fig. 3), which precisely cor-

responds to the percolation transition threshold predicted by

the BEMT for spherical inclusions. At fB
c the value of the

SE can be more than two orders of magnitude larger than its

values for other inclusions’ concentrations (f 6= fB
c ) and for

distances z . 1 µm. In the insets of Fig. 2, the relative varia-

tion of the SE rate with respect to its value in the presence of

an homogeneous gold semi-infinite medium (f = 1),

∆Γ⊥,‖

Γ⊥,‖(f = 1)
≡

Γ⊥,‖ − Γ⊥,‖(f = 1)

Γ⊥,‖(f = 1)
, (18)

is calculated as a function of z. In both parallel and perpen-

dicular cases, ∆Γ⊥,‖/Γ⊥,‖(f = 1) is largely enhanced at

the percolation transition fB
c , specially for shorter distances

z . 1 µm. This relative variation can be as impressive as 500

Figure 2. Spontaneous emission rate dependence with the distance z
to the semi-infinite composite medium (BEMT) for parallel (a) and

perpendicular (b) transition dipole orientations. In both panels the

metallic inclusions are made of gold and L = 1/3 (spheres). The

insets display the SE rates relative to the f = 1 case, i. e., when

the emitter is in presence of an homogeneous gold substrate, for the

same values of f as before.

at fB
c , unambiguously demonstrating that composite media

can largely outperform homogeneous media, when it comes

to modify and tune the SE rate.

In order to further investigate the dependence of the SE rate

on the filling fraction f , in Fig. 3 the behavior of Γ⊥ and Γ‖

as a fuction of f is depicted for different distances z between

the emitter and the composite medium. Figure 3 shows that

for distances z . 1 µm the decay rate reaches its maximal

value exactly at the percolation threshold fB
c , in both parallel

and perpendicular configurations. For distances smaller than

1 µm the results of Fig. 3 are well described by Eq. (17). As

a consequence, in this regime the enhancement in the Purcell

effect at fB
c relative to the homogeneous gold semi-infinite

medium is distance-independent,

Γ⊥,‖(f = fB
c )

Γ⊥,‖(f = 1)
≃

Im[εe]

Im[εi]

|εi + 1|2

|εe + 1|2
. (19)

For other distances z . 10 µm the enhancement at fB
c is

of one order of magnitude or less. Figure 3 also emphasizes

the importance of near-field effects, as the SE rate enhance-

ment becomes small for distances z & 10 µm and completely

disappears at z ∼ 1mm.
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Figure 3. Spontaneous emission rate as a function of the volume

filling factor f for parallel Γ‖/Γ
(0) (a) and perpendicular Γ⊥/Γ

(0)

(b) cases. Results were computed for several z-distances between the

emitter and the semi-infinite medium. All other parameters are the

same as in Fig. 2. Both panels reveal that maximum enhancement in

the SE rate occurs at the insulator metal transition fB

c = 1/3.

It is interesting to comment that a large enhancement of heat

transfer between composite bodies at the percolation thresh-

old also occurs due to near-field effects [34]. Here the role of

the near-field is similar and it helps one to qualitatively un-

derstand the physical origin of the SE rate enhancement at fc.

Indeed, the physical explanation of these two distinct phenom-

ena (SE decay rate and near heat field transfer) in the presence

of composite media are intrinsically related to the universal

properties of the percolation phase transition, in particular the

enhanced and scale invariant current and electric field fluctua-

tions that take place close to the percolation critical point [35].

These enhanced electric field fluctuations modify the struc-

ture of the electromagnetic modes, and hence show up in the

LDOS. For composite media around the percolation thresh-

old, extremely localized and subwavelength confined resonant

plasmon excitations occur, leading to the formation of giant

spatial fluctuations of the electromagnetic field intensity (“hot

spots”) [35]. As the existence of localized modes has been

demonstrated to strongly amplify the LDOS [26], we con-

clude that the SE rate should be enhanced at the insulator-

metal transition as well. These arguments qualitatively ex-

plain the results reported in Figs. 2 and 3.

The influence of the various possible inclusions shapes in

the SE rate in shown in Fig. 4, where Γ‖ is calculated as a

function of both the filling fraction f and the depolarization

factor L for z = 50 nm [(a) and (c)] and z = 500 nm [(b) and

(d)]. In panels (a) and (b) the effective dielectric constant of

the substrate was obtained using BEMT whereas (c) and (d)

Figure 4. Density plots of Γ‖/Γ
(0) as a function of both filling factor

f and the depolarization factor L for z = 50 nm (a) and (c), and

z = 500 nm (b) and (d). Panels (a) and (b) correspond to calculations

using the Bruggeman effective medium theory whereas (c) and (d) to

the Lagarkov-Sarychev approach. The dashed line in each plot shows

the percolation transition curve as predicted by Eqs. 13 and 14. All

other parameters are the same as in Fig. 2.

correspond to calculations involving the Lagarkov-Sarychev

approach. We note from these graphics that for each value

of L there exists an optimum filling factor f that maximises

the decay rate (brightest regions in the plots). Interestingly,

the position of the peak of the SE rate in Fig. 4 is perfectly

described by the percolation curves given in Eqs. (13) and

(14), as shown by the dashed lines in the plots. These results

demonstrate the robustness of our findings against variations

of the shape of the inclusions as well as changes in effective

theory used to model the electric permittivity εe of the com-

posite medium. We checked that these conclusions are valid

for both parallel (Γ‖) and perpendicular (Γ⊥) configurations

and apply for all distances z . 10 µm. We have also verified

that our results are not qualitatively modified by changing the

material that constitute the metal inclusions. Indeed, in Table

I, we show the ratio between Γ‖ at the percolation threshold

(f = fc) and its value for a full metallic semi-infinite medium

(f = 1) when the substrate is composed with different metal

inclusions. In the table L = 0.1 corresponds to needle-like

inclusions (eccentricity e ≃ 0.95) and L = 1/3 to spheri-

cal ones (e = 0). The enhancement in the SE rateΓ‖ is at

least two orders of magnitude, regardless of the metal and

the effective medium theory considered. We emphasize that

the same effect occurs for the Γ⊥ rate. These results provide

evidence that our findings should hold even beyond the ef-

fective medium approximation. The differences in the results

obtained by means of the BEMT and the Lagarkov-Sarychev

model for L = 0.1 are due to the distinct assumptions made

about the host dielectric medium (see Sec. II B and Refs. [31–

33, 35]).
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Bruggeman Lagarkov-Sarychev

L = 0.1 L = 1/3 L = 0.1 L = 1/3

Au 794 524 116 524

Cu 1099 726 104 726

Ti 190 127 127 127

Ag 923 610 108 610

Table I. Values for the ratio Γ‖(f = fc)/Γ‖(f = 1) for differ-

ent metallic inclusions. All values were computed by considering

a Polystyrene host medium, an emitter-substrate distance of 50 nm,

and emission wavelength of 450µm.

We should mention that our results apply for a broad range

of transition frequencies and could be tested using quantum

emitters working from THz to near-infrared. In Fig. 5, the SE

rate in the parallel configuration is calculated using BEMT

as a function of both transition frequency ω and volume fill-

ing factor f considering spherical gold inclusions (L = 1/3)

at z = 50nm distance between the emitter and the com-

posite media. The maximum emission always takes place

at the percolation threshold fB
c . At larger frequencies the

insulator-metal transition effect on the emitter’s lifetime be-

comes weaker and a broadening of the emission peak occurs.

This behavior is due to the fact that, for larger and larger fre-

quencies, the distinction between dielectrics and conductors

becomes less and less pronounced, thus making the percola-

tion transition less dramatic. We have verified that similar re-

sults hold in the perpendicular configuration; they also apply

within the Lagarkov-Sarychev model.

In Fig. 6, we investigate the role of the different decay chan-

nels in the SE rate. The decay probability of the quantum

emission is shown in terms of propagating (Prop), totally in-

ternal reflected (TIR) or evanescent modes (Eva) as a function

of the filling factor f and the distance z between the atom and

the semi-infinite medium. The probabilities are computed as

the ratio between the partial and the total SE rate. The partial

contribution of these modes to decay rates can be expressed

as [25]

ΓProp
⊥

Γ(0)
(z) =1 +

3

2

∫ k0

0

k3‖

k30 ξ
Re

[

rTM, TM e2iξz
]

dk‖

ΓTIR
⊥

Γ(0)
(z) =

3

2

∫ nek0

k0

k3‖

k30 ζ
e−2ζzIm

[

rTM, TM
]

dk‖

ΓEva
⊥

Γ(0)
(z) =

3

2

∫ ∞

nek0

k3‖

k30 ζ
e−2ζzIm

[

rTM, TM
]

dk‖, (20)

where we defined the medium index of refraction ne =
Re

√

εe/ε0. In Fig. 6(a) we see clearly that for f ≤ fc, the

contribution of the evanescent modes quickly rises and domi-

nates the decay process. Despite the fact that the medium be-

haves effectively as a dielectric in this regime, it is the dissipa-

tion in the metallic inclusions that actually gives rise to such a

dominance. Once we step into the f > fc region, we see that

evanescent and TIR modes progressively swap roles, and the

latter becomes the most important decay channel. This hap-

pens because ne grows steadily as a function of f in the metal-

lic regime, so there are more TIR modes available as the filling

Figure 5. The two-dimensional plot displays the ratio Γ‖/Γ
(0) us-

ing the BEMT as a function of the filling factor f and the quantum

emitter frequency ω. The enhancement of the SE rate reaches its

maximum precisely at percolation transition f = fB

c = 1/3 (for

spherical inclusions). A similar behavior has been verified for the

perpendicular case Γ⊥/Γ
(0).

factor is increased. In addition, in Fig. 6(b) we show the dif-

ferent decay pathways right at the percolation threshold [39],

as a function of distance. For short distances, the enhancement

in SE is due mainly to the evanescent contribution, meaning

that the energy associated with the decay is (with very high

probability) absorbed by the half-space [40]. As the distance

increases, the contribution of evanescent modes decreases and

propagating and TIR modes become more important.

In Fig. 7, the contribution to the SE rate due to evanes-

cent modes is shown as a function of both f and z. It can be

noted that, for z . 100 nm, the probability of decaying in a

evanescent mode is larger than 60% (and even larger when the

media behaves like dielectric f < fB
c ). We should also stress

out that at the percolation f = fB
c = 1/3 (for spherical inclu-

sions) the contribution of evanescent modes are relevant even

for larger distances of about z . 1µm.

IV. CONCLUSIONS

We have investigated the spontaneous emission rate of a

two-level atom in the vicinities of a semi-infinite medium

composed of randomly dispersed, arbitrary shaped gold in-

clusions embedded in a polystyrene host matrix. Using effec-

tive medium theories to describe the electromagnetic proper-

ties of the composite medium, we demonstrate that the pres-

ence of composite media is responsible for a great enhance-

ment of the SE rate relative to the homogeneous semi-infinite

medium case. We find that this enhancement in the SE rate

is maximal at the percolation critical point for the composite

medium, where it can be as impressive as two orders of mag-

nitude. The enhancement in the spontaneous emission rate is

more pronounced at small distances between the emitter and
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Figure 6. The decay channel probability of the quantum emission in

the presence of the effective media (BEMT) with spherical inclusions

(L = 1/3) is displayed as a function of both the filling factor f at a

fixed distance z = 150 nm between the atom and the media (a) and

as a function of z at the percolation threshold f = 1/3 (b).

Figure 7. The quantum emission into evanescent modes is displayed

as a function of both the distance between the emitter and the media

z and the filling factor f .

the composite medium, unveiling the crucial role of near field

effects. In addition, we show that our results are robust against

material losses, to changes in the shape of inclusions and ma-

terials, for a broad range of transition frequency, and apply

for different effective medium theories. We also investigate

the contribution of different decaying channels in the SE rate.

We hope that our findings could guide the design of compos-

ite media aiming at tailoring and optimizing the decay rate of

quantum emitters.
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